Exome sequencing is more likely to deliver a genetic diagnosis than multigene panels or chromosomal microarray.
waits up to 5 years2
undergoes 5 uninformative
medical tests3
incurs $10,000 in healthcare
costs before reaching a diagnosis3
The American College of Medical Genetics and Genomics recommends exome or genome as a first-tier test for developmental delay, intellectual disability, and congenital anomalies.15
The National Society of Genetic Counselors recommends exome or genome sequencing for all individuals with unexplained epilepsy. This guideline is endorsed by the American Epilepsy Society.16
Choosing exome sequencing can shorten the journey to a diagnosis, resulting
in updated medical management and reduced healthcare expenses.
The diagnostic rate of exome testing is 2x greater than chromosomal microarray.4,6
23% of patients diagnosed via exome testing would not have received a diagnosis with a genetic panel.7
XomeDx®, the GeneDx exome test, analyzes the protein-coding regions of approximately 20,000 genes to identify genetic changes that may be the underlying cause of a patient’s symptoms or condition. Select trio, duo or proband.
Turnaround time: 5 weeks*XomeDx® Plus consists of concurrent evaluation of the exome and mitochondrial genome using two separate assays. Separate result reports will be issued for the exome analysis and the mitochondrial genome analysis. XomeDx® Plus is best suited for individuals with clinical features suggesting a mitochondrial disorder. Select trio, duo, or proband.
Turnaround time: 5 weeks**Turnaround times are estimates and begin once the sample(s) begin processing at the GeneDx lab and could be extended in situations outside GeneDx’s control.
†Fictionalized case study for illustrative purposes only
References: 1. Nguengang Wakap S, Lambert DM, Olry A, et al. Eur J Hum Genet. 2020 Feb;28(2):165-173. doi: 10.1038/s41431-019-0508-0. 2. Marwaha S, Knowles JW, and Ashley EA. Genome Med. 2022 Feb 28;14(1):23. doi: 10.1186/s13073-022-01026-w. 3. Soden SE, Saunders CJ, Willig LK, et al. Sci Transl Med. 2014 Dec 3;6(265):265ra168. doi: 10.1126/scitranslmed.3010076. 4. Savatt JM, Myers SM. Front Pediatr. 2021 Feb 19;9:526779. doi: 10.3389/fped.2021.52679. 5. Malinowski, J., Miller, D.T., Demmer, L. et al. Genet Med. 22, 986–1004 (2020). https://doi.org/10.1038/s41436-020-0771-z. 6. Srivastava S, Love-Nichols JA, Dies KA, et al. Genet Med. 2019 Nov;21(11):2413–2421; https://doi.org/10.1038/s41436-019-0554-6. 7. Dillon OJ, Lunke S, Stark Z, et al. Eur J Hum Genet. 2018 May;26(5):644-651. doi: 10.1038/s41431-018-0099-1. 8. Pekeles H, Accogli A, Boudrahem-Addour N, Russell L, Parente F, Srour M. Pediatr Neurol. 2019 Mar;92:32-36. doi: 10.1016/j.pediatrneurol.2018.11.005. 9. Stefanski A, Calle-López Y, Leu C, et al. Epilepsia. 2021 Jan;62(1):143-151. doi: 10.1111/epi.16755. 10. Mellone S, Puricelli C, Vurchio D, et al. Front Genet. 2022 Aug 11;13:875182. doi: 10.3389/fgene.2022.875182. 11. Spataro N, Trujillo-Quintero JP, Manso C, et al. Genes (Basel). 2023 Mar 13;14(3):708. doi: 10.3390/genes14030708. 12. Sheidley BR, Malinowski J, Bergner AL, et al. Epilepsia. 2022 Feb;63(2):375-387. doi: 10.1111/epi.17141. 13. Ní Ghrálaigh F, McCarthy E, Murphy DN, et al. J Autism Dev Disord. 2023 Jan;53(1):484-488. doi: 10.1007/s10803-021-05417-7. 14. Arteche-López A, Gómez Rodríguez MJ, Sánchez Calvin MT, et al. Genes. 2021(12):560. https://doi.org/10.3390/genes12040560. 15. Manickam K, McClain MR, Demmer LA, et al. Genet Med. 2021;23(11):2029-2037. doi: 10.1038/s41436-021-01242. 16. Smith L, Malinowski J, Ceulemans S, et al. J Genet Couns. 2022 Oct 24. Doi.org/10.1002/jgc4.1646.