AR Gene Analysis for Spinal and Bulbar Muscular Atrophy

Also known as: Kennedy Disease, KD, SBMA, X-linked Spinal and Bulbar Muscular Atrophy, SMAX1, Bulbospinal Neuronopathy, X-linked Recessive, XBSN

Mendelian inheritance in Man Number:
313200 Spinal and Bulbar Muscular Atrophy, X-linked 1; SMAX1

Clinical Features:
Spinal and bulbar muscular atrophy (SBMA) is a slowly progressive neuromuscular disorder in which degeneration of the lower motor neurons causes muscle weakness, muscle atrophy, and fasciculations of the perioral region. The onset of disease ranges from 18-64 years of age, with most individuals presenting in the fourth or fifth decade (Rhodes et al., 2009). Androgen insensitivity, resulting in gynecomastia, testicular atrophy, and oligospermia/azoospermia, can present in adolescence. The onset of neurological symptoms typically ranges from 30-50 years of age; features can include muscle cramps, active tremor, decreased deep tendon reflexes, difficulty walking, and frequent falls due to muscle weakness. As the proximal and distal weakness and atrophy progresses, ambulation becomes more difficult. Bulbar muscle involvement typically progresses early in the fifth decade resulting in difficulties in articulation (dysarthria) and difficulty swallowing (dysphagia) (Atsuta et al., 2006). In a minority of individuals with SBMA there is a risk for potentially life-threatening aspiration pneumonia and respiratory failure as a result of weakness in the bulbar and respiratory musculature (Kennedy et al., 1968; Atsuta et al., 2006). Histopathology findings include degeneration of motor neurons in the spinal cord and brainstem, and the identification of nuclear inclusions containing abnormal androgen receptor protein in the remaining motor neurons (Li et al., 1998; Soraru et al., 2008; Adachi et al., 2005). Electromyography (EMG) findings include anterior horn cell loss, sensory neuropathy, and diffuse denervation atrophy (Olney et al., 1991). The prevalence of SBMA is estimated at 1:40,000-1:50,000 males, with a higher prevalence in European and Asian populations (La Spada et al., 1991; Tanaka et al., 1996).

Inheritance:
SBMA is inherited in an X-linked manner.

Genetics:
SBMA is caused by expansion of the glutamine repeat (CAG) in exon 1 of the androgen receptor (AR) gene (La Spada et al., 1991). Normal alleles have between 11 and 34 CAG trinucleotide repeats, and disease alleles have greater than 38 repeats (Atsuta et al., 2006; Rhodes et al., 2009). Reduced penetrance has been observed in families with alleles that have 35-37 repeats. In those individuals that have alleles within the reduced penetrance range, clinical significance should be interpreted within the context of the individual’s clinical presentation and family history (Kuhlenbaumer et al., 2001). There is an inverse correlation between CAG repeat length and age of onset, as well as a direct correlation between repeat length and disease severity (Doyu et al., 1992; Atsuta et al., 2006). The glutamine repeat in AR is meiotically unstable, leading to expansion of the repeat during transmission from parent to offspring. While a correlation exists between repeat number and disease onset and severity, prediction of disease course cannot be based solely on the repeat number (La Spada et al., 1999).

Reason for Referral:
1. Molecular confirmation of a clinical diagnosis
2. Genetic counseling

Methods:
Using genomic DNA obtained from blood (2-10 mL in EDTA), CAG repeat analysis is performed using two complementary PCR assays. Each sample is evaluated by repeat primed PCR to identify an expanded allele, and standard PCR fragment analysis is used to determine the number of repeats in each allele. The combination of repeat primed PCR and fragment analysis allows for the definitive identification of an expanded allele, making it suitable for the evaluation of carrier status. The largest recorded allele of 78 repeats can be analyzed accurately using this strategy.

Test Sensitivity:
The clinical sensitivity for analysis of the glutamine repeat in AR depends on the clinical phenotype of the patient. All individuals with SBMA have an expansion of the glutamine repeat in exon 1 of the AR gene, which is detectable by this targeted mutation analysis (La Spada, 2014). The technical sensitivity of fragment analysis is estimated to be greater than 95%. Pathogenic single nucleotide variants and whole or partial deletions and duplications of the AR gene are not reported in association with SBMA and would not be detected by this analysis.
Specimen Requirements and Shipping/Handling:

- **Blood:** Whole blood in EDTA. Adults: 8-10 ml; Children: 4 ml; Infants: 2 ml. Ship blood overnight at ambient temperature, using a cool pack in hot weather. Blood specimens may be refrigerated for up to 7 days prior to shipping.
- **Extracted DNA:** Outside DNA is discouraged; however, high quality extracted DNA can be accepted. This test requires a minimum of 20 ug of DNA at a concentration of 50 ng/ul of DNA with a minimum volume of 400 ul.
- **Other specimens:** Whole blood is preferred. If any other sample is being considered, please contact us for specific information.

Required Forms:

- Sample Submission (Requisition) Form - complete all pages.
- Payment Options Form or Institutional Billing Instructions.

For test and CPT codes, please refer to the Test Catalog “by Disorder” page on our website at http://www.genedx.com.

References:

Li et al. (1998) Nuclear inclusions of the androgen receptor protein in spinal and bulbar muscular atrophy 44: 249-254.

